In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy

Author:

Nelson Christopher E.12,Hakim Chady H.3,Ousterout David G.12,Thakore Pratiksha I.12,Moreb Eirik A.12,Rivera Ruth M. Castellanos4,Madhavan Sarina12,Pan Xiufang3,Ran F. Ann56,Yan Winston X.578,Asokan Aravind4,Zhang Feng591011,Duan Dongsheng312,Gersbach Charles A.1213

Affiliation:

1. Department of Biomedical Engineering, Duke University, Durham, NC, USA.

2. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.

3. Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.

4. Gene Therapy Center, Departments of Genetics, Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

5. Broad Institute of MIT and Harvard, Cambridge, MA, USA.

6. Society of Fellows, Harvard University, Cambridge, MA, USA.

7. Graduate Program in Biophysics, Harvard Medical School, Boston, MA, USA.

8. Harvard–MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.

9. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

10. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

11. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

12. Department of Neurology, University of Missouri, Columbia, MO, USA.

13. Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.

Abstract

Editing can help build stronger muscles Much of the controversy surrounding the gene-editing technology called CRISPR/Cas9 centers on the ethics of germline editing of human embryos to correct disease-causing mutations. For certain disorders such as muscular dystrophy, it may be possible to achieve therapeutic benefit by editing the faulty gene in somatic cells. In proof-of-concept studies, Long et al. , Nelson et al. , and Tabebordbar et al. used adeno-associated virus-9 to deliver the CRISPR/Cas9 gene-editing system to young mice with a mutation in the gene coding for dystrophin, a muscle protein deficient in patients with Duchenne muscular dystrophy. Gene editing partially restored dystrophin protein expression in skeletal and cardiac muscle and improved skeletal muscle function. Science , this issue p. 400 , p. 403 , p. 407

Funder

Muscular Dystrophy Association

Duke-Coulter Translational Partnership Grant

March of Dimes Foundation

NSF

Keck

Damon Runyon

Searle Scholars

Merkin Family

Vallee

Simons

Paul G. Allen

New York Stem Cell Foundation

Bob Metcalfe

NIH

Hope for Javier Foundation

Hartwell Foundation

American Heart Association

National Institute of General Medical Sciences

Paul and Daisy Soros Fellowship

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 967 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3