Widespread Production of Extracellular Superoxide by Heterotrophic Bacteria

Author:

Diaz Julia M.1,Hansel Colleen M.12,Voelker Bettina M.3,Mendes Chantal M.1,Andeer Peter F.2,Zhang Tong2

Affiliation:

1. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

2. Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

3. Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA.

Abstract

Sending Out an ROS The global imprint of biological activity in aquatic environments is often considered a consequence of enzyme-mediated redox reactions that support metabolic activity, such as reducing oxygen during respiration. But some organisms also release redox-active reactive oxygen species (ROS) into the environment—to acquire trace metals or to prevent viral infections—which can influence global processes like nutrient availability and contaminant transport. Photosynthetic organisms like phytoplankton are thought to be the primary biological source of ROS in freshwater and marine environments. However, Diaz et al. (p. 1223 , published online 2 May; see the Perspective by Shaked and Rose ) now show that a broad range of ecologically and phylogenetically diverse heterotrophic bacteria also produce large quantities of superoxide. Production rates vary widely across 30 common bacterial isolates but in some cases were greater than production rates of phytoplankton. Because these bacteria do not require light to grow, they may be the dominant source of ROS in dark environments like the deep ocean, terrestrial soils, or lake sediments.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3