Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics

Author:

Strakosas Xenofon12ORCID,Biesmans Hanne1ORCID,Abrahamsson Tobias1ORCID,Hellman Karin2ORCID,Ejneby Malin Silverå1ORCID,Donahue Mary J.1ORCID,Ekström Peter2ORCID,Ek Fredrik2ORCID,Savvakis Marios1ORCID,Hjort Martin2ORCID,Bliman David34ORCID,Linares Mathieu15ORCID,Lindholm Caroline1ORCID,Stavrinidou Eleni1ORCID,Gerasimov Jennifer Y.1ORCID,Simon Daniel T.1ORCID,Olsson Roger23ORCID,Berggren Magnus1ORCID

Affiliation:

1. Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.

2. Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden.

3. Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.

4. IRLAB Therapeutics AB, Arvid Wallgrens Backe 20, 413 46 Gothenburg, Sweden.

5. Scientific Visualization Group, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.

Abstract

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo–fabricated electronics within the nervous system.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3