LAT, the Linker for Activation of T Cells: A Bridge Between T Cell-Specific and General Signaling Pathways

Author:

Wange Ronald L.1

Affiliation:

1. The author is at the Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

Abstract

A key event in the regulation of the adaptive immune response is the binding of major histocompatibility complex-bound foreign peptides to T cell antigen receptors (TCRs) that are present on the cell surface of T lymphocytes. Recognition of the presence of cognate antigen in the host animal induces a series of biochemical changes within the T cell; these changes, in the context of additional signals from other surface receptors, ultimately result in massive proliferation of receptor-engaged T cells and the acquisition of effector and memory functions. Early studies established the importance of the activation of the enzymes phospholipase C-γ1 (PLC-γ1) and phosphatidylinositol 3-kinase (PI3K), as well as the small molecular weight heterotrimeric guanine nucleotide binding protein (G protein) Ras, in this process. These biochemical events are dependent on the activity of several protein tyrosine kinases that become activated immediately upon TCR engagement. An unresolved question in the field has been which molecules and what sequence of events tie together the early tyrosine phosphorylation events with the activation of these downstream signaling molecules. A likely candidate for linking the proximal and distal portions of the TCR signaling pathway is the recently described protein, LAT. LAT is a 36-kD transmembrane protein that becomes rapidly tyrosine-phosphorylated after TCR engagement. Phosphorylation of LAT creates binding sites for the Src homology 2 (SH2) domains of other proteins, including PLC-γ1, Grb2, Gads, Grap, 3BP2, and Shb, and indirectly binds SOS, c-Cbl, Vav, SLP-76, and Itk. LAT is localized to the glycolipid-enriched membrane (GEM) subdomains of the plasma membrane by virtue of palmitoylation of two cysteine residues positioned near the endofacial side of the plasma membrane. Notably, in the absence of LAT, TCR engagement does not lead to activation of distal signaling events. This review examines the circumstances surrounding the discovery of LAT and our current understanding of its properties, and discusses current models for how LAT may be functioning to support the transduction of TCR-initiated, T cell-specific signaling events to the distal, general signaling machinery.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3