Automatic assessment of online discussions using text mining

Author:

Awuor Yvette,Oboko Robert

Abstract

Online discussion forums have rapidly gained usage in e-learning systems. This has placed a heavy burden on course instructors in terms of moderating student discussions. Previous methods of assessing student participation in online discussions followed strictly quantitative approaches that did not necessarily capture the students’ effort. Along with this growth in usage there is a need for accelerated knowledge extraction tools for analysing and presenting online messages in a useful and meaningful manner. This article discussed a qualitative approach which involves content analysis of the discussions and generation of clustered keywords which can be used to identify topics of discussion. The authors applied a new k-means++ clustering algorithm with latent semantic analysis to assess the topics expressed by students in online discussion forums. The proposed algorithm was then compared with the standard k-means++ algorithm. Using the Moodle course management forum to validate the proposed algorithm, the authors show that the k-mean++ clustering algorithm with latent semantic analysis performs better than a stand-alone k-means++.

Publisher

AOSIS

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ML Based Automated Assistance System for Efficient Crowd Control A detailed investigation;2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2023-05-12

2. Understanding Students’ Engagement in Learning Emerging Technologies of Construction Sector: Feasibility of Wearable Physiological Sensing System-Based Monitoring;Lecture Notes in Civil Engineering;2022-06-01

3. Automatic Assisstance System Based on Machine Learning for Effective Crowd Management;2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2022-04-28

4. Sentiment Analysis to Track Emotion and Polarity in Student Fora;Proceedings of the 21st Pan-Hellenic Conference on Informatics;2017-09-28

5. Enhancing Active Learning Pedagogy through Online Collaborative Learning;Handbook of Research on Active Learning and the Flipped Classroom Model in the Digital Age;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3