Algae colonisation of brick pavement at the University of Venda: A potential slippery hazard

Author:

Munyai Thabelo R.,Sonqishe ThandiORCID,Gumbo Jabulani R.ORCID

Abstract

A brick pavement, tramped by humans, is exposed to atmospheric elements, thus allowing cyanobacteria and algae to colonise. In this article, we report on the factors that contribute to the slipperiness of a brick pavement at the University of Venda in the Limpopo province of the South Africa. Samples were collected from brick surfaces either colonised by green algae (treated) or not (control). The samples were acid-digested and analysed for metals by Inductively Coupled Plasma Mass Spectrometry (ICP MS) in parts per billion (ppb). The treated bricks, with green algae, had average high metal contents (ppb): Al 9456.02, Ti 731.23, V 46.44, Cr 78.85, Mn 862.93, Fe 16295.18, Co 23.57, Ni 59.36, Cu 66.31, Zn 160.57, As 7.92, Se 10.45, Mo 6.74, Cd 5.19, Sn 4.65, Sb 2.31 and Pb 19.51. In contrast, control bricks had a low average of metal content (ppb) as follows: Al 2.99, Ti 0.28, V 4.04, Cr 1.42, Mn 4.29, Fe 20.89, Co 0.36, Ni 2.74, Cu 5.64, Zn 4.21, As 0.56, Se <3.00, Mo 0.88, Cd 0.01, Sn 1.05, Sb 0.04 and Pb 0.04. Other factors that promote algae colonisation include high solar radiation, neutral pH, nutrients, low electrical conductivity and total dissolved solids. The algae colonisation of brick pavement results in an unaesthetic sighting and a slippery surface that is hazardous to humans.

Publisher

AOSIS

Subject

Management, Monitoring, Policy and Law,Safety Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3