Vision-based Propeller Damage Inspection Using Machine Learning

Author:

Harras Mohamed Salim,Saleh Shadi,Battseren Batbayar,Hardt Wolfram

Abstract

Unmanned Aerial Vehicles (UAVs) play an increasingly pivotal role in day-to-day rescue operations, offering crucial aerial support in challenging terrain and emergencies, such as drowning. Drone hangars are strategically deployed to ensure swift response in remote locations, overcoming range-limiting constraints posed by battery capacity. However, the UAV's airworthiness, typically ensured through conventional inspections by a technical individual, is paramount to guarantee mission safety. Over time, UAVs are prone to degradation through contact with the external environment, with propellers often being the cause of flight instability and potential crashes. This paper presents an innovative approach to automate UAV propeller inspection to avert incidents preemptively. Leveraging visual recordings and deep learning methodologies, we train a Convolutional Neural Network (CNN) model using both passive and active learning strategies. Our approach successfully detects physical damage on propellers with an impressive accuracy of 85.8%, promising a significant improvement in maintaining UAV flight safety and effectiveness in rescue operations.

Publisher

Chemnitz University of Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3