Which robust regression technique is appropriate under violated assumptions? A simulation study

Author:

Kim Jaejin,Li Johnson Ching-Hong

Abstract

Ordinary least squares (OLS) regression is widely employed for statistical prediction and theoretical explanation in psychology studies. However, OLS regression has a critical drawback: it becomes less accurate in the presence of outliers and non-random error distribution. Several robust regression methods have been proposed as alternatives. However, each robust regression has its own strengths and limitations. Consequently, researchers are often at a loss as to which robust regression method to use for their studies. This study uses a Monte Carlo experiment to compare different types of robust regression methods with OLS regression based on relative efficiency (RE), bias, root mean squared error (RMSE), Type 1 error, power, coverage probability of the 95% confidence intervals (CIs), and the width of the CIs. The results show that, with sufficient samples per predictor (n = 100), the robust regression methods are as efficient as OLS regression. When errors follow non-normal distributions, i.e., mixed-normal, symmetric and heavy-tailed (SH), asymmetric and relatively light-tailed (AL), asymmetric and heavy-tailed (AH), and heteroscedastic, the robust method (GM-estimation) seems to consistently outperform OLS regression.

Publisher

Leibniz Institute for Psychology (ZPID)

Subject

General Psychology,General Social Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3