Iconicity in mathematical notation: Commutativity and symmetry

Author:

Wege Theresa Elise,Batchelor Sophie,Inglis Matthew,Mistry Honali,Schlimm Dirk

Abstract

Mathematical notation includes a vast array of signs. Most mathematical signs appear to be symbolic, in the sense that their meaning is arbitrarily related to their visual appearance. We explored the hypothesis that mathematical signs with iconic aspects – those which visually resemble in some way the concepts they represent – offer a cognitive advantage over those which are purely symbolic. An early formulation of this hypothesis was made by Christine Ladd in 1883 who suggested that symmetrical signs should be used to convey commutative relations, because they visually resemble the mathematical concept they represent. Two controlled experiments provide the first empirical test of, and evidence for, Ladd’s hypothesis. In Experiment 1 we find that participants are more likely to attribute commutativity to operations denoted by symmetric signs. In Experiment 2 we further show that using symmetric signs as notation for commutative operations can increase mathematical performance.

Publisher

Leibniz Institute for Psychology (ZPID)

Subject

Applied Mathematics,Experimental and Cognitive Psychology,Numerical Analysis

Reference36 articles.

1. WegeT. E.BatchelorS.InglisM.MistryH.SchlimmD. (2019). Supplementary materials to "Iconicity in mathematical notation: Commutativity and symmetry"[Preregistration protocol for Study 1]. AsPredicted. https://aspredicted.org/er78g.pdf

2. WegeT. E.BatchelorS.InglisM.MistryH.SchlimmD. (2017). Supplementary materials to "Iconicity in mathematical notation: Commutativity and symmetry"[Preregistration protocol for Study 2]. AsPredicted. https://aspredicted.org/ij4pz.pdf

3. WegeT. E.BatchelorS.InglisM.MistryH.SchlimmD. (2020). Supplementary materials to "Iconicity in mathematical notation: Commutativity and symmetry"[Research data and materials]. Loughborough University Research Repository. https://doi.org/10.17028/rd.lboro.12489731.v1

4. Allenby, R. B. J. T. (1995). Linear algebra. London, United Kingdom: Arnold.

5. On the influence of signs in mathematical reasoning.;Babbage;Transactions of the Cambridge Philosophical Society,1827

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signs as a Theme in the Philosophy of Mathematical Practice;Handbook of the History and Philosophy of Mathematical Practice;2024

2. Where word and world meet: Language and vision share an abstract representation of symmetry.;Journal of Experimental Psychology: General;2023-02

3. Signs as a Theme in the Philosophy of Mathematical Practice;Handbook of the History and Philosophy of Mathematical Practice;2023

4. THE GENEALOGY OF ‘’;The Review of Symbolic Logic;2022-01-03

5. Peano on Symbolization, Design Principles for Notations, and the Dot Notation;Philosophia Scientae;2021-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3