A comparative evaluation of spatial interpolation techniques for maximum temperature series in the Montreal region, Canada

Author:

,YOUSSEF SALIBA,ALINA BĂRBULESCU,

Abstract

This study aims to provide a comparative analysis of two of the most used methods of spatial interpolation – Thiessen Polygons (TP) and Inverse Distance Weighting (IDW) with a spatio-temporal approach – Spatio-temporal kriging (STK) on a data series from Canada. The IDW parameter is optimized to obtain the best fitting for the studied series, based on the Root Mean Squared Errors (RMSE) and Mean Absolute Percentage Error (MAPE). The advantages and disadvantages of each algorithm are emphasized. Although TP registered the lowest RMSE and a MAPE, the analysis favors the STK use for modeling Montreal’s maximum temperature series.

Publisher

Editura Academiei Romane

Reference28 articles.

1. "1. J. Li and A.D. Heap, A Review of Spatial Interpolation Methods for Environmental Scientists, Geoscience Australia, Canberra, 2008.

2. 2. S. Ly, C. Charles, A. Degre, Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review, Biotechnol. Agron. Soc. Environ. 17, 67-82 (2013).

3. 3. A. Comber and W. Zeng, Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations, Geogr. Compass 13(10), e12465 (2019).

4. 4. G.Y. Lu and D.W. Wong, An adaptive inverse-distance weighting spatial interpolation technique, Comput. Geosci. 34, 1044-1055 (2008).

5. 5. C.L. Chang, S.L. Lo, and S.L. Yu, The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation, Environ. Monit. Assess. 117, 145-155 (2006).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3