Abstract
One gives a characterization of the Gorenstein nilpotent scheme structures on a smooth algebraic variety as support, in terms of a duality property of the graded objects associated to two canonical filtrations.
Reference10 articles.
1. [1] C. B˘anic˘a and O. Forster, Sur les structures multiples. Manuscript, 1981.
2. [2] C. B˘anic˘a and O. Forster, Multiplicity structures on space curves. Contemp. Math. 58 (1986), 47-64. 148 N. Manolache 8
3. [3] M. Boratynsky, Locally complete intersection multiple structures on smooth algebraic curves. Proc. Amer. Math. Soc. 115 (1992), 877-879.
4. [4] D. Ferrand, Courbes gauches et fibr'es de rang 2. C. R. Math. Acad. Sci. Paris 281 (1975), 345-347.
5. [5] R. Fossum, Commutative extensions by canonical modules are Gorenstein rings. Proc. Amer. Math. Soc. 40 (1973), 395-400.