Enhanced security in federated learning by integrating homomorphic encryption for privacy-protected, collaborative model training

Author:

Rao Ganga Rama Koteswara,Ghanimi Hayder M. A.,Ramachandran V.,Al-Qahtani Dokhyl,Dadheech Pankaj,Sengan Sudhakar

Abstract

A significant novel approach in distributed ML, Federated Learning (FL), enables multiple parties to work simultaneously on developing models while securing the confidentiality of their unique datasets. There are issues regarding privacy with FL, particularly for models that are being trained, because private information can be accessed from shared gradients or updates to the model. This investigation proposes SecureHE-Fed, a novel system that improves FL’s defense against attacks on privacy through the use of Homomorphic Encryption (HE) and Zero-Knowledge Proofs (ZKP). Before data from clients becomes involved in the learning procedure, SecureHE-Fed encrypts it. The following lets us determine encrypted messages without revealing the data as it is. As an additional security test, ZKP is employed to verify if modifications to models are valid without sharing the true nature of the information. By evaluating SecureHE-Fed with different FL techniques, researchers demonstrate that it enhances confidentiality while maintaining the precision of the model. The results of this work obtained validate SecureHE-Fed as a secure and scalable FL approach, and we recommend its use in applications where user confidentiality is essential.

Publisher

Taru Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3