A Hybrid Inversive Congruential Pseudorandom Number Generator with High Period

Author:

Riera Constanza,Roy Tapabrata,Sarkar Santanu,Stanica Pantelimon

Abstract

Though generating a sequence of pseudorandom numbers by linear methods (Lehmer generator) displays acceptable behavior under some conditions of the parameters, it also has undesirable  features, which makes the sequence unusable for various stochastic simulations. An extension which showed promise for such applications is a generator obtained by using a first-order recurrence based upon the inversive modulo a prime or a prime power, called inversive congruential generator (ICG). A lot of work has been dedicated to investigate the periods (under some conditions of the parameters), the lattice test passing, discrepancy  and other statistical properties of such a generator. Here, we propose a new method, which we call hybrid inversive congruential generator (HICG), based upon a second order recurrence using the inversive modulo M, a power of 2. We investigate the period of this  pseudorandom numbers generator (PRNG) and give necessary and sufficient conditions for our PRNG to have periods M (thereby doubling the period of the classical ICG) and M/2 (matching the one of the ICG). Moreover, we show that the lattice test complexity for a binary sequence associated to (a full period) HICG is precisely M/2.

Publisher

New York Business Global LLC

Subject

Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3