Needle Damage Development in Norway Spruce Seedlings as Affected by Humidity, Temperature, and Gray Mold: A Preliminary Study

Author:

Petäistö Raija-Liisa1,Heiskanen Juha1

Affiliation:

1. Suonenjoki Unit, Finnish Forest Research Institute, 77600 Suonenjoki, Finland

Abstract

Botrytis cinerea inoculation on 3- and 6-month-old Norway spruce seedlings was tested in combinations of temperature (15 and 25°C) and relative humidity (50 and 80%) in a growth chamber. Occurrence of needle damage was examined 11 days after the inoculation. Damage occurred more on inoculated than on control seedlings. Needle damage tended to occur proportionally more on the older seedlings and concentrating more on the tops of the shoot in the younger seedlings. The higher temperature suggested slightly more damage occurrence than the lower temperature did. The relative humidity did not appear to correlate with the damage outbreak. Surface wetness tended to increase the damage occurrence but so did also the vapour pressure deficit. At the lower relative humidity, the seedlings had to be irrigated more frequently, which increased the surface wetness. Thus, the results suggest that any irrigation method or other condition control that can provide low surface wetness on seedlings decreases needle damage by B. cinerea in forest nurseries.

Funder

Foundation for Research of Natural Resources in Finland

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3