Radar sensing of the sea surface using small spacecraft

Author:

Kartsan Igor1,Zhukov Aleksander2

Affiliation:

1. Marine Hydrophysical Institute, Russian Academy of Sciences, Kapitanskaya str., 2, Sevastopol, Russia;

2. MIREA—Russian Technological University, Vernadskogo ave, 78, Moscow, Russia;

Abstract

The possibility of using a constellation of small spacecraft as receiving satellites, when “highlighting” the sea surface from existing (navigational, communication) or specially created spacecraft—to form a wide-area (about 1 000 km) radar survey zone at a given resolution (about 10 m)—is under consideration. Such a constellation could provide operational monitoring of fast-moving atmospheric cyclones, measuring directly the parameters of storm waves (altitude and orbital velocity)—which would replace the existing constellation of microwave scatterometers, providing operational monitoring of the World Ocean surface in the 3 H (H—altitude of the satellite’s orbit) field of view with a resolution of about 10 km—but with calibration of the received images by wind speed and direction, which leads to huge errors when trying to introduce altitude calibration in the Small spacecraft have many advantages over large satellites. For example, they are relatively inexpensive to build, take minimal time from design to launch, are easily modified to solve a specific problem, and create less radio interference. The approach under consideration consists in redistribution of tasks to be solved between the constellation of satellites in orbit. High orbiting navigation satellites, for example, can be used as transmitter carriers (of the illumination of the surface) that use the necessary broadband signal with acceptable periodicity. Receivers of reflected signals are placed on board small spacecraft, and at formation of wide-band radar image of sea surface with necessary resolution ∼10 m (that only on order exceeds acceptable on small spacecraft size of receiving antennas)—in flight direction is necessary to use synthesized aperture of receiving antenna. This work has the character of “staged” research.

Publisher

LLC Kartfond

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Исследование уязвимостей и угроз безопасности стандарта IEEE 802.11;Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies;2023-09-01

2. Algorithm for assessing the promptness of Earth space sensing information delivery;E3S Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3