Affiliation:
1. Volga State University of Technology, pl. Lenina, 3, 424000, Yoshkar-Ola, Russia;
Abstract
This work summarizes literary and cartographic material that characterizes the Morskoy Glaz Lake and its catchment area. The levels of aquifers and the catchment area of the lake were determined along with development of digital models of the terrain and relief of the lake basin, which were developed on the basis of multi-temporal microdrone photo-shooting with usage of geodetic referencing of basepoints using the tools of Agisoft Metashape and GIS “Panorama”. The catchment area of the lake doesn’t exceed more than 1.3 km², while the main supply of water nourishment of the lake forms as a surface runoff and groundwater flow on an area of about 0.6 km². This area contains 45 residential building connected by local sewerage and many private water wells. The lands of rural settlements and agricultural lands make up 26 % and 64 % of main catchment area, respectively. With the usage of photographic materials of the lake provided by users of social medias and usage of digital terrain models of Agisoft Metashape, a reconstruction of the dynamics of the lake water levels for 2013–2022 was carried out, which made it possible to calculate volumes of lake waters for specific calendar dates along with possibility of estimation of the rate of change of water volumes in the lake, which was achieved through the usage of tools of GIS “Panorama”. Long-term level of water’s edge of the lake is 121.5 meters, the total volume of the lake is 53,185 m³. Since 2014, there have been significant fluctuations in the level of the water’s edge in the lake. Meanwhile, the rate of water volume change varied from 3.9 to −3.6 dm³ per second. The reason for the negative water balance in March 2022 is formation of a ponor at the end of the winter of 2014, which subsequent expansion along with periodic overlapping by screes and microlandslides have led to complete disappearance of the lake. The proposed algorithm based on the usage of the Citizen science technologies (collection of amateur photo- and video- data), combined with usage of GIS-tools can be used for providing monitoring for water bodies.