Affiliation:
1. Shaheed Bhagat Singh College
2. National Institute of Technology manipur
Abstract
Let $P(z)=a_0+\sum\limits_{\nu=\mu}^na_{\nu}z^{\nu}$, $1\leq\mu\leq n$, be a polynomial of degree $n$ having all its zeros in $|z|\leq k$, $k\geq 1$. We obtain an improvement and a generalization of an inequality in polar derivative proved by Somsuwan and Nakprasit [1]. Further, we also extend a result proved by Chanam and Dewan [2] to its polar version. Besides, our results are also found to generalize and improve some known inequalities.
Publisher
Mathematical Sciences and Applications E-Notes
Reference13 articles.
1. [1] Somsuwan, J., Nakprasit, K. M.: Some bounds for the polar derivative of a polynomial. International Journal of
Mathematics and Mathematical Sciences. 2018, 5034607 (2018).
2. [2] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. Journal of Interdisciplinary Mathematics.
11(4), 469-478 (2008).
3. [3] Bernstein, S.: Lecons sur les propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable
réelle. Gauthier Villars. Paris (1926).
4. [4] Lax, P. D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50, 509-513
(1944).
5. [5] Turán, P.: Über die Ableitung von Polynomen. Compositio Mathematica. 7, 89-95 (1939).