Affiliation:
1. Federal University of São João del-Rei
2. State University of Bahia
3. Tarapaca University
4. J. K. College
5. State University of Pará
Abstract
This manuscript deals with global solution, polynomial stability and blow-up behavior at a finite time for the nonlinear system $$ \left\{ \begin{array}{rcl} & u'' - \Delta_{p} u + \theta + \alpha u' = \left\vert u\right\vert ^{p-2}u\ln \left\vert u\right\vert \\ &\theta' - \Delta \theta = u' \end{array} \right. $$ where $\Delta_{p}$ is the nonlinear $p$-Laplacian operator, $ 2 \leq p < \infty$. Taking into account that the initial data is in a suitable stability set created from the Nehari manifold, the global solution is constructed by means of the Faedo-Galerkin approximations. Polynomial decay is proven for a subcritical level of initial energy. The blow-up behavior is shown on an instability set with negative energy values.
Publisher
Mathematical Sciences and Applications E-Notes
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献