Abstract
Although research on social networks is progressing rapidly, the positive and negative effects of this area should be evaluated. One of the problems is that social networks are very broad and anyone can have influence on them. This matter can cause the issue of people with different beliefs. Therefore, determining the amount of trust to various resources on social networks, and especially resources for which there is no previous history on the web, is one of the main challenges in this field. In this paper, we present a method for predicting trust in a social network by structural similarities through the neural network. In this method, the web of trust data set is converted to a structural similarity data set based on the similarity of the trustors and trustees first. Then, on the created data set, a part of the data set is considered as the training data and it is trained based on the multilayer perceptron neural network and then the trained neural network is tested based on the test data. In the proposed method, the MSE value is less than 0.01, which has improved more than 0.02 compared to previous methods. Based on the obtained results, the proposed method has provided acceptable accuracy.
ABSTRAK: Walaupun kajian tentang rangkaian sosial adalah sangat pesat, kesan positif dan negatif dalam ruang lingkup ini perlu dinilai. Masalah rangkaian sosial adalah sangat luas dan sesiapa sahaja boleh terpengaruh. Perkara ini akan menyebabkan manusia dengan pelbagai isu kepercayaan. Oleh itu, menentukan nilai kepercayaan melalui pelbagai sumber dalam rangkaian sosial, terutama sumber-sumber yang tidak mempunyai sejarah lepas dalam web, adalah salah satu cabaran dalam bidang ini. Kajian ini membentangkan jangkaan kepercayaan dalam rangkaian sosial melalui persamaan struktur dengan menggunakan rangkaian neural. Kaedah ini ditentukan dengan menukar set data web kepercayaan kepada struktur set data hampir sama berdasarkan kesamaan pemegang dan pemberi amanah. Kemudian, sebilangan set data yang telah dibina ini dipertimbangkan sebagai data latihan dan ia dilatih berdasarkan rangkaian neural perseptron berbagai lapisan dan kemudian rangkaian neural yang terlatih ini diuji berdasarkan data ujian. Dalam kaedah yang dicadangkan ini, nilai MSE adalah kurang daripada 0.01, di mana telah diperbaiki kepada 0.02 lebih daripada kaedah-kaedah sebelum ini. Berdasarkan dapatan kajian, didapati kaedah yang dicadangkan ini menunjukkan ketepatan yang boleh diterima.
Subject
Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献