sSNAPPY: an R/Bioconductor package for single-sample directional pathway perturbation analysis

Author:

Liu WenjunORCID,Mäkinen Ville-Petteri,Tilley Wayne D,Pederson Stephen MORCID

Abstract

A common outcome of analysing RNA-Seq data is the detection of biological pathways with significantly altered activity between the conditions under investigation. Whilst many strategies test for over-representation of genes, showing changed expression within pre-defined gene-sets, these analyses typically do not account for gene-gene interactions encoded by pathway topologies, and are not able to directly predict the directional change of pathway activity. To address these issues we have developed sSNAPPY,now available as an R/Bioconductor package, which leverages pathway topology information to compute pathway perturbation scores and predict the direction of change across a set of pathways. Here, we demonstrate the use of sSNAPPY by applying the method to public scRNA-seq data, derived from ovarian cancer patient tissues collected before and after chemotherapy. Not only were we able to predict the direction of pathway perturbations discussed in the original study, but sSNAPPY was also able to detect significant changes of other biological processes, yielding far greater insight into the response to treatment. sSNAPPY represents a novel pathway analysis strategy that takes into consideration pathway topology to predict impacted biology pathways, both within related samples and across treatment groups. In addition to not relying on differentially expressed genes, the method and associated R package offers important flexibility and provides powerful visualisation tools. R version: R version 4.3.3 (2024-02-29) Bioconductor version: 3.18 Package: 1.6.1

Funder

National Breast Cancer Foundation

National Health and Medical Research Council

Publisher

F1000 Research Ltd

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3