A novel homomorphic polynomial public key encapsulation algorithm

Author:

Kuang RandyORCID,Perepechaenko Maria

Abstract

Background: One of the primary drivers in development of novel quantum-safe cryptography techniques is the ongoing National Institute of Standards and Technology (NIST) Post-Quantum Cryptography (PQC) competition, which aims to identify quantum-safe algorithms for standardization. Although NIST has recently announced candidates to be standardized, the development of novel PQC algorithms remains desirable to address the challenges of quantum computing. Furthermore, to enhance security and improve performance. Methods: This paper introduces a novel public key encapsulation algorithm that incorporates an additional layer of encryption during key construction procedure, through a hidden ring. This encryption involves modular multiplication over the hidden ring using a homomorphism operator that is closed under addition and scalar multiplication. The homomorphic encryption key is comprised of two values - one used to create the hidden ring and the other to form an encryption operator. This homomorphic encryption can be applied to any polynomials during key construction over a finite field with their coefficients considered private. Particularly, the proposed homomorphic encryption operator can be applied to the public key of the Multivariate Public Key Cryptography schemes (MPKC) to hide the structure of its central map construction. Results: This paper presents a new variant of the MPKC with its public key encrypted using the proposed homomorphic operator. This novel scheme is called the Homomorphic Polynomial Public Key (HPPK) algorithm, which simplifies MPKC central map to two multivariate polynomials constructed from polynomial multiplications. The HPPK algorithm employs a single polynomial vector for the plaintext and a multi-variate noise vector associated with the central map. In contrast, in MPKC, a single multivariate vector is created by segmenting the secret plaintext over a small finite field. The HPPK algorithm is Indistinguishability Under Chosen-Plaintext Attack (IND-CPA) secure, and its classical complexity for cracking is exponential in the size of the prime field GF(p).

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference32 articles.

1. Cryptographic communications system and method.;R Rivest;US Patent 4,405,829.,December 1977

2. New directions in cryptography.;W Diffie;IEEE Trans. Inf. Theory.,November 1976

3. Elliptic curve cryptosystems.;N Koblitz;Math. Comput.,1987

4. A method for obtaining digital signatures and public-key cryptosystems.;R Rivest;Commun. ACM.,1978

5. Symmetric-key homomorphic encryption for encrypted data processing.;A Chan;2009 IEEE International Conference on Communications.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Java Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature;2024 13th International Conference on Communications, Circuits and Systems (ICCCAS);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3