Funding knowledgebases: Towards a sustainable funding model for the UniProt use case

Author:

Gabella ChiaraORCID,Durinx ChristineORCID,Appel Ron

Abstract

Millions of life scientists across the world rely on bioinformatics data resources for their research projects. Data resources can be very expensive, especially those with a high added value as the expert-curated knowledgebases. Despite the increasing need for such highly accurate and reliable sources of scientific information, most of them do not have secured funding over the near future and often depend on short-term grants that are much shorter than their planning horizon. Additionally, they are often evaluated as research projects rather than as research infrastructure components. In this work, twelve funding models for data resources are described and applied on the case study of the Universal Protein Resource (UniProt), a key resource for protein sequences and functional information knowledge. We show that most of the models present inconsistencies with open access or equity policies, and that while some models do not allow to cover the total costs, they could potentially be used as a complementary income source. We propose the Infrastructure Model as a sustainable and equitable model for all core data resources in the life sciences. With this model, funding agencies would set aside a fixed percentage of their research grant volumes, which would subsequently be redistributed to core data resources according to well-defined selection criteria. This model, compatible with the principles of open science, is in agreement with several international initiatives such as the Human Frontiers Science Program Organisation (HFSPO) and the OECD Global Science Forum (GSF) project. Here, we have estimated that less than 1% of the total amount dedicated to research grants in the life sciences would be sufficient to cover the costs of the core data resources worldwide, including both knowledgebases and deposition databases.

Funder

ELIXIR

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3