Ex vivo comparative investigation of suprachiasmatic nucleus excitotoxic resiliency

Author:

Acharyya Debalina,Cooper Joanna,Prosser Rebecca A.ORCID

Abstract

Background: Glutamate signaling in the brain is regulated by release, reuptake, and receptor responsiveness. In diseased conditions, glutamate signaling can exceed normal regulatory processes, giving rise to a condition called excitotoxicity. Although regional differences in the excitotoxic effects of glutamate in the brain have been reported, the extent and characteristics of these potential differences are not clear.  Here we compared the excitotoxic resiliency of the suprachiasmatic nucleus (SCN), anterior hypothalamus (AH) and cortex.  Methods: We treated acute brain slices containing either the SCN and AH or the cortex from adult male mice at different times across the diurnal cycle with varying concentrations of N-methyl-D-aspartate (NMDA), NMDA+ α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or control medium. The extent of cell damage was assessed using propidium iodide (PI), a cell death marker. Results: The results indicate that all three brain regions exhibited increasing cell damage/death when treated with increasing concentrations of NMDA. However, higher concentrations of NMDA were needed to significantly increase cell damage in the SCN compared to the cortex and AH.  All three brain regions also exhibited greater cell death/damage when treated in the nighttime compared to the daytime, although the SCN exhibited increased cell death during a more restricted time interval compared to the AH and cortex.  Conclusions: Together, these data confirm previous studies showing excitotoxic resiliency in the SCN, while extending them in two ways.  First, we demonstrate a dose-dependency in excitotoxic susceptibility that differentiates the SCN from the surrounding AH and the cortex using a brain slice preparation. Second, we demonstrate a diurnal rhythm in excitotoxic susceptibility with a broadly similar phase across all three brain regions. These data increase our understanding of the extent and nature of the SCN excitotoxic resiliency, which will inform future studies on the cellular mechanisms underlying this phenomenon.

Funder

University of Tennessee Knoxville

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3