Feasibility and guidelines for the use of an injectable fiducial marker (BioXmark®) to improve target delineation in preclinical radiotherapy studies using mouse models.

Author:

Brown KathrynORCID,Ghita Mihaela,Prise Kevin M,Butterworth Karl T

Abstract

Background: Preclinical models of radiotherapy (RT) response are vital for the continued success and evolution of RT in the treatment of cancer. The irradiation of tissues in mouse models necessitates high levels of precision and accuracy to recapitulate clinical exposures and limit adverse effects on animal welfare. This requirement has been met by technological advances in preclinical RT platforms established over the past decade. Small animal RT systems use onboard computed tomography (CT) imaging to delineate target volumes and have significantly refined radiobiology experiments with major 3Rs impacts. However, the CT imaging is limited by the differential attenuation of tissues resulting in poor contrast in soft tissues. Clinically, radio-opaque fiducial markers (FMs) are used to establish anatomical reference points during treatment planning to ensure accuracy beam targeting, this approach is yet to translate back preclinical models. Methods: We report on the use of a novel liquid FM BioXmark® developed by Nanovi A/S (Kongens Lyngby, Denmark) that can be used to improve the visualisation of soft tissue targets during beam targeting and minimise dose to surrounding organs at risk. We present descriptive protocols and methods for the use of BioXmark® in experimental male and female C57BL/6J mouse models. Results: These guidelines outline the optimum needle size for uptake (18-gauge) and injection (25- or 26-gauge) of BioXmark® for use in mouse models along with recommended injection volumes (10-20 µl) for visualisation on preclinical cone beam CT (CBCT) scans. Injection techniques include subcutaneous, intraperitoneal, intra-tumoral and prostate injections. Conclusions: The use of BioXmark® can help to standardise targeting methods, improve alignment in preclinical image-guided RT and significantly improve the welfare of experimental animals with the reduction of normal tissue exposure to RT.

Funder

National Centre for the Replacement Refinement and Reduction of Animals in Research

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3