Hypoxic preconditioning promotes survival of human adipose derived mesenchymal stem cell via expression of prosurvival and proangiogenic biomarkers

Author:

Suryawan I Gde Rurus,Pikir Budi SusetyoORCID,Rantam Fedik AbdulORCID,Ratri Anudya Kartika,Nugraha Ricardo AdrianORCID

Abstract

Background: Contributing factors for improved survival of human adipose derived mesenchymal stem cells (h-AMSCs) cultured through hypoxia preconditioning, in example apoptosis inhibition involving BCL2 and HSP27 expression, trigger signal expression (VEGF), SCF expression, OCT-4 expression, and CD44+ expression. The objective if this study was to explain the mechanism and role of hypoxic preconditioning and the optimal duration of hypoxic preconditioning exposure to improve survival of h-AMSCs. Methods: An experimental laboratory explorative study (in vitro) with hypoxic preconditioning in h-AMSCs cultures. This research was conducted through four stages. First, isolation of h-AMSCs culture from adipose tissue of patients. Second, the characterization of h-AMSCs from adipose tissue by phenotype (flowcytometry) through CD44+, CD90+ and CD45-expression before being pre-conditioned for hypoxic treatment. Third, the hypoxic preconditioning in h-AMSCs culture (in vitro) was performed with an oxygen concentration of 1% for 24, 48 and 72 hours. Fourth, observation of survival from h-AMSCs culture was tested on the role of CD44+, VEGF, SCF, OCT-4, BCL2, HSP27 with Flowcytometry and apoptotic inhibition by Tunnel Assay method. Results: The result of regression test showed that time difference had an effect on VEGF expression (p<0.001;β=-0.482) and hypoxia condition also influenced VEGF expression (p<0.001;β=0.774). The result of path analysis showed that SCF had effect on OCT-4 expression (p<0.001; β=0.985). The regression test results showed that time effects on HSP27 expression (p<0.001; β=0.398) and hypoxia precondition also affects HSP27 expression (p<0.001; β=0.847). Pathway analysis showed that BCL2 expression inhibited apoptosis (p=0.030; β=-0.442) and HSP27 expression also inhibited apoptosis (p<0,001;β=-0.487). Conclusion: Hypoxic preconditioning of h-AMSC culture has proven to increase the expression of VEGF, SCF, OCT-4, and BCL2 and HSP27. This study demonstrated and explained the existence of a new mechanism of increased h-AMSC survival in cultures with hypoxic preconditioning (O2 1%) via VEGF, SCF, OCT-4, BCL2, and HSP 27.

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3