Analysis and study of the potential increase in energy output generated by prototype solar tracking, roof mounted solar panels

Author:

Harazin JacekORCID,Wróbel Andrzej

Abstract

Roof mounted solar panels come in form of fixed panels, unable to adjust to sun’s position during day and throughout the year. As an effect, the efficiency of such solution is usually dependent on the roof slope and position of the building in relation to sun’s day arc during seasons. These problems can be bypassed in free standing solar installations by equipping solar panels with solar tracker installations. Thanks to solar tracking, solar panels can be dynamically positioned perpendicular to the sun position and gather energy more efficiently throughout the day. This article presents a possibility of creating a roof mounted solar tracking panel to increase irradiance efficiency. A prototype of solar tracking panel with two axes of movement was designed with an intention of an easy adaptation to being mounted on sloped surfaces of building roofs. A reference stationary panel was used to compare the efficiency of both solutions. A 5-day study was carried out to determine if the proposed solution could provide any benefits. Based on the study, the authors made an attempt to draw a conclusion whether the design could considerably increase the solar energy output to be worth the extra spending associated with solar tracker installation.

Funder

Politechnika Śląska

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of electric drive system for solar battery system based on artificial intelligence;2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS);2023-11-27

2. Performance evaluation and comparative study of three 52-kW PV plants in India: a case study;F1000Research;2023-08-31

3. Techniques and technologies to board on the feasible renewable and sustainable energy systems;Renewable and Sustainable Energy Reviews;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3