Identification of genetic pathways driving Ebola virus disease in humans and targets for therapeutic intervention

Author:

Achinko Daniel A.,Dormer Anton,Narayanan Mahesh,Norman Elton F.,Abbas MuneerORCID

Abstract

Introduction: LCK gene, also known as lymphocyte-specific proto-oncogene, is expressed in lymphocytes, and associated with coordinated expression of MHC class I and II in response to physiological stimuli, mediated through a combined interaction of promoters, suppressors, and enhancers. Differential usage of LCK promoters, transcribes dysfunctional transcript variants leading to leukemogenesis and non-induction of MHC class I gene variants. Viruses use C-type lectins, like CD209, to penetrate the cell, and inhibit Pattern Recognition Receptors (PRR), hence evading immune destruction. Given that Ebolavirus (EBOV) disease burden could result from a dysfunctional LCK pathway, identification of the genetic pathway leading to proper immune induction is a major priority. Methods: Data for EBOV related virus samples were obtained from Gene Expression Omnibus database and RMEAN information per gene per sample were entered into a table of values. R software v.3.3.1 was used to process differential expression patterns across samples for LCK, CD209 and immune-related genes. Principal component analysis (PCA) using ggbiplot v.0.55 was used to explain the variance across samples. Results: Data analyses identified three viral clusters based on transmission patterns as follows: LCK-CD209 dependent, LCK-dependent specific to EBOV, and CD209 dependent. Compared to HLA class II gene variants, HLA class I (A, B and C) variants were <2 fold expressed, especially for EBOV samples. PCA analyses classified TYRO3, TBK1 and LCK genes independent of the data, leading to identification of a possible pathway involving LCK, IL2, PI3k, TBK1, TYRO3 and MYB genes with downstream induction of immune T-cells. Discussion: This is the first study undertaken to understand the non-functional immune pathway, leading to EBOV disease pathogenesis and high fatality rates. Our lab currently exploits, through cutting edge genetic technology to understand the interplay of identified genes required for proper immune induction. This will guide antiviral therapy and possible markers for viral disease identification during outbreaks.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3