Web-based digital twin online laboratories: Methodologies and implementation

Author:

Lei ZhongchengORCID,Zhou Hong,Hu Wenshan,Liu Guo-Ping

Abstract

Background: Online laboratories that provide online experimentation are crucial for education and research in all fields of engineering. As a transformative technology, the digital twin can be potentially applied into online laboratories to enable physical-digital twin interactions and enhance user experience. Methods: In this article, web-based digital twin online laboratories are discussed, the methodologies and implementation of which are presented in detail. The digital twin architecture, three-dimensional twin model, web-based digital twin control algorithm design, and real-time physical-twin control are explored to provide a full picture for the design and implementation of digital twin online laboratory systems. To illustrate the effectiveness of the proposed methodologies, a use case with the Networked Control System Laboratory (a previously developed control and automation laboratory) is provided, which details the design and implementation. Results: A four-tier web architecture has been implemented. With the provided web interface, control algorithms can be designed and employed for real-time digital twin experimentation. The experimental results demonstrated that the physical-digital twin fan speed control system can achieve good control and tracking performance with human-in-the-loop interactions. Conclusions: This article presents the methodologies and implementation of digital twin web-based online laboratories. The use case verified the proposed web architecture, digital twin implementation, control architecture, and human-in-the-loop interactions for a digital twin experimentation system, which can potentially be used for the design and implementation of other digital-twin applications in different fields.

Funder

National Natural Science Foundation of China

Publisher

F1000 Research Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3