The NLRP3 inhibitor MCC950 inhibits IL-1β production in PBMC from 19 patients with Cryopyrin-Associated Periodic Syndrome and in 2 patients with Schnitzler’s Syndrome

Author:

Corcoran Sarah E.ORCID,Hafner-Bratkovič IvaORCID,Halai Reena,Domingo-Fernandez Raquel,O'Leary Daire,Banahan Kathy,Jerala Roman,Conlon Niall,Jung Thomas,O'Neill Luke A.J.,Cooper Matthew A.,Irvine Alan D.ORCID

Abstract

Background: The cryopyrin-associated periodic syndromes (CAPS) are a group of inherited disorders associated with systemic auto-inflammation. CAPS result from gain-of-function mutations in NLRP3, which result in formation of an intracellular protein complex known as the NLRP3 inflammasome. This leads to overproduction of IL-1β and other pro-inflammatory signals, resulting in inflammatory symptoms. Treatments for NLRP3-related diseases are biologic agents that directly target IL-1β. We sought to determine if the orally available small molecule NLRP3 inhibitor MCC950 could inhibit IL-1β ex vivo in a cohort of patients with autoinflammatory disease. Methods: Patients were recruited to donate blood, from which PBMCs were isolated and assayed in the presence of MCC950 to determine inhibitory efficacy. Results: We found that apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and mature IL-1β was higher in ex vivo PBMCs from CAPS patients than healthy donors. MCC950 inhibited production of mature IL-1β in PBMC from CAPS patients with a range of mutations and blocked NLRP3 activity in an in vitro mutation reconstitution assay. Similar results were observed with PBMC from two patients with Schnitzler’s Syndrome, another auto-inflammatory disease. Conclusions: The NLRP3 inflammasome inhibitor MCC950 blocked constitutive activation of NLRP3 observed in the PBMCs of CAPS patients. This study highlights the potential utility of NLRP3 inhibition by a small molecule for rare autoinflammatory diseases that are driven by NLRP3.

Funder

Science Foundation Ireland

Javna Agencija za Raziskovalno Dejavnost RS

Wellcome Trust

Inflazome Ltd.

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3