Amodiaquine resistance in Plasmodium berghei is associated with PbCRT His95Pro mutation, loss of chloroquine, artemisinin and primaquine sensitivity, and high transcript levels of key transporters

Author:

Ndung'u Loise,Langat Benard,Magiri Esther,Ng'ang'a Joseph,Irungu Beatrice,Nzila Alexis,Kiboi DanielORCID

Abstract

Background: The human malaria parasite Plasmodium falciparum has evolved drug evasion mechanisms to all available antimalarials. The combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short-acting, artesunate is partnered with long-acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used the ramp up approach to select amodiaquine resistance. We then employed the 4-Day Suppressive Test to measure the resistance level and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of the parasite to amodiaquine pressure yielded resistant line within thirty-six passages. The effective doses that reduced 90% of parasitaemia (ED90) of the sensitive and resistant lines were 4.29mg/kg and 19.13mg/kg respectively. The selected parasite retained resistance after ten passage cycles in the absence of the drug and freezing at -80ºC for one month with ED90 of 20.34mg/kg and 18.22mg/kg. The parasite lost susceptibility to chloroquine by (6-fold), artemether (10-fold), primaquine (5-fold), piperaquine (2-fold) and lumefantrine (3-fold). Sequence analysis of Plasmodium berghei chloroquine-resistant transporter revealed His95Pro mutation. We found no variation in the nucleotide sequences of Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain. However, high mRNA transcripts of essential transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca2+/H+ antiporter accompanies amodiaquine resistance. Conclusions: The selection of amodiaquine resistance yielded stable “multidrug-resistant’’ parasites and thus may be used to study shared resistance mechanisms associated with other antimalarial drugs. Genome-wide analysis of the parasite may elucidate other functionally relevant genes controlling AQ resistance in P. berghei.

Funder

DELTAS Africa Initiative

Pan African University

Wellcome Trust

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3