Single-cell imaging and transcriptomic analyses of firm adhesion between patient-derived cancer and endothelial cells under shear stress

Author:

Cerutti CamillaORCID,Luzi LucillaORCID,De Michele Giulia,Gambino Valentina,Migliaccio Enrica,Pelicci Pier Giuseppe

Abstract

Adhesion between cancer cells and endothelial cells, lining the blood vessels, is a key event during tumour progression and metastasis formation. However, the analysis of its underlying cellular and molecular mechanisms is largely limited by the intrinsic difficulties to study the interactions between circulating cancer cells and endothelial cells in vivo, and in vitro under conditions that mimic the in vivo blood flow. Here, we developed a method to study cell:cell firm adhesion under shear-stress conditions coupled to high-content live-cell imaging, and single-cell RNAseq analysis. As the model system, we used cancer cells freshly isolated from patient-derived xenografts (PDXs) and human primary endothelial cells. Breast cancer is the most common cancer in women worldwide and the leading cause of cancer-related deaths among women. Therefore, we set up protocols for breast cancer PDX tumour dissociation, isolation and purification to obtain freshly isolated PDX-derived human cancer single cell suspension. We then implemented an in vitro assay to study cancer to endothelial cells firm adhesion under shear-stress, using an all–human microfluidic model coupled to time-lapse and live-cell imaging. Finally, we developed a method to successfully retrieve, separate and enrich alive endothelial and cancer cells from the flow-based firm adhesion assay. Most notably, we used retrieved cells for single-cell RNAseq analysis and showed that samples quality, number of cells and transcripts per cell were consistent and optimal for downstream discovery analyses. In conclusion, we developed a workflow method that can provide insights into the mechanisms of cancer adhesion to endothelial cells, and identify new targets for personalized treatments development for the clinic to prevent and/or treat breast cancer metastasis formation.

Funder

Horizon 2020 Framework Programme

Associazione Italiana per la Ricerca sul Cancro

Italian Ministry of Health

PRIN17

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3