Fluorescent reporter of Caenorhabditis elegans Parkin: Regulators of its abundance and role in autophagy-lysosomal dynamics

Author:

Vozdek RomanORCID,Wang Bingying,Li Kathy H.,Pramstaller Peter P.,Hicks Andrew A.ORCID,Ma Dengke K.

Abstract

Background: Parkin, which when mutated leads to early-onset Parkinson’s disease, acts as an E3 ubiquitin ligase. How Parkin is regulated for selective protein and organelle targeting is not well understood. Here, we used protein interactor and genetic screens in Caenorhabditis elegans (C. elegans) to identify new regulators of Parkin abundance and showed their impact on autophagy-lysosomal dynamics and alpha-Synuclein processing. Methods: We generated a transgene encoding mCherry-tagged C. elegans Parkin – Parkinson’s Disease Related 1 (PDR-1). We performed protein interactor screen using Co-immunoprecipitation followed by mass spectrometry analysis to identify putative interacting partners of PDR-1. Ribonucleic acid interference (RNAi) screen and an unbiased mutagenesis screen were used to identify genes regulating PDR-1 abundance. Confocal microscopy was used for the identification of the subcellular localization of PDR-1 and alpha-Synuclein processing. Results: We show that the mCherry::pdr-1 transgene rescues the mitochondrial phenotype of pdr-1 mutants and that the expressed PDR-1 reporter is localized in the cytosol with enriched compartmentalization in the autophagy-lysosomal system. We determined that the transgenic overexpression of the PDR-1 reporter, due to inactivated small interfering RNA (siRNA) generation pathway, disrupts autophagy-lysosomal dynamics. From the RNAi screen of putative PDR-1 interactors we found that the inactivated Adenine Nucleotide Translocator ant-1.1/hANT, or hybrid ubiquitin genes ubq-2/hUBA52 and ubl-1/hRPS27A encoding a single copy of ubiquitin fused to the ribosomal proteins L40 and S27a, respectively, induced PDR-1 abundance and affected lysosomal dynamics. In addition, we demonstrate that the abundant PDR-1 plays a role in alpha-Synuclein processing. Conclusions: These data show that the abundant reporter of C. elegans Parkin affects the autophagy-lysosomal system together with alpha-Synuclein processing which can help in understanding the pathology in Parkin-related diseases.

Funder

Horizon 2020 Framework Programme

Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano, Italy

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3