Experimental Validation Through a Parallel Computation Algorithm for Evaluation Uncertainty of the Mathematical Model of Direct Expansion Solar Assisted Heat Pump

Author:

Duarte Willian M.,Paulino Tiago F.,Duarte Wendel M.,Maia Antônio A.T.,Machado Luiz

Abstract

This paper presents the development of a mathematical model for a direct-expansion solar-assisted heat pump (DX-SAHP) operating in steady-state. The mathematical model was implemented using the scientific software EES and using a code written in Python. It was utilized a lumped parameter model for the heat exchangers and a semi-empirical model for the compressor. The mathematical model was validated using experimental data of a DX-SAHP running with R134a. Two hundred simulations were made combining different correlations for estimating the convective heat transfer coefficient in the evaporator/collector. The Mean Absolute Deviation (MAD) and the Mean Deviation (MD) between the theoretical and experimental values for the COP were 2.6±1.8 % and 0.9±1.8 %, respectively. The MAD and MD between the discharge temperature were 1.56±0.16 % and -1.45±0.16 %. The mean difference between the results using EES and Python were 1.4 %. The use of Python with parallel computing for uncertainty analyses, reduced the simulation time in 88 % if compared with EES. The model in Python is available as open-source through the platform Google Colaboratory.

Publisher

Zeal Press

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3