CLASSIFICATION OF THE EDUCATIONAL TEXTS STYLES WITH THE METHODS OF ARTIFICIAL INTELLIGENCE

Author:

Horáková Tereza1,Houška Milan1,Dömeová Ludmila1

Affiliation:

1. Czech University of Life Sciences Prague, Czech Republic

Abstract

Modern educational methods emphasize the necessity to transfer knowledge instead of data or information within the educational process. Thus it is important to the educational texts supporting the educational process contain knowledge in a particular textual representation. But it is not trivial to decide whether the particular piece of text contain knowledge or not. The solution is to measure the similarity between the particular text structure and a typical structure of a knowledge-designed text. This research aims at analysing the classification ability of three commonly-used classification techniques: artificial neural networks (ANNs), classification and regression trees (CARTs) and decision trees (bigMLs) to separate texts or text fragments into two groups. The texts in the first group contain mainly data and information (common texts), the texts in the other group contain knowledge in one of the particular knowledge representations (knowledge texts). The sample of 120 text fragments was used for the analysis. The results show that the ANN techniques are significantly more able to make the right classification of the text than the CART or bigML ones, and evidence good classification abilities. Thus the ANN approach could broaden the set of methods used for evaluation of difficulty of educational texts or textbooks. Keywords: artificial intelligence, classification and regression trees, educational texts, knowledge representation, knowledge unit, production rules, stylometric analysis.

Publisher

Scientia Socialis Ltd

Subject

Education

Reference51 articles.

1. Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16 (1), 3-9.

2. Alivernini, F., Cavicchiolo, E., Palmerio, L., & Girelli, L. (2015). Representations of study and students’ academic motivation. Procedia Social and Behavioral Sciences, 205, 302-305. doi: 10.1016/j.sbspro.2015.09.086.

3. Archambault, L. M., & Barnett, J. H. (2010). Revisiting technological pedagogical content knowledge: Exploring the TPACK framework. Computers & Education, 55 (4), 1656-1662. doi: 10.1016/j.compedu.2010.07.009.

4. Arya, D., Hiebert, E., & Pearson, P. (2011). The effects of syntactic and lexical complexity on the comprehension of elementary science texts. International Electronic Journal of Elementary Education, 4 (1), 107-125.

5. Bishop, C. M. (2005). Neural networks for pattern recognition. Oxford: Oxford university press.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3