Affiliation:
1. University of California
2. DTxPharma
3. University of Brasília
4. University of California, Irvine
5. Massachusetts General Hospital
6. University Massachusetts General Hospital
Abstract
Abstract
Burgeoning evidence demonstrates that effects of environmental exposures can be transmitted to subsequent generations through the germline without DNA mutations1,2. This phenomenon remains controversial because underlying mechanisms have not been identified. Therefore, understanding how effects of environmental exposures are transmitted to unexposed generations without DNA mutations is a fundamental unanswered question in biology. Here, we used an established murine model of male-specific transgenerational obesity to show that exposure to the obesogen tributyltin (TBT) elicited heritable changes in chromatin interactions (CIs) in primordial germ cells (PGCs). New CIs were formed within the Ide gene encoding Insulin Degrading Enzyme in the directly exposed PGCs, then stably maintained in PGCs of the subsequent (unexposed) two generations. Concomitantly, Ide mRNA expression was decreased in livers of male descendants from the exposed dams. These males were hyperinsulinemic and hyperglycemic, phenocopying Ide-deficient mice that are predisposed to adult-onset, diet-induced obesity. Creation of new CIs in PGCs, suppression of hepatic Ide mRNA, increased fat mass, hyperinsulinemia and hyperglycemia were male-specific. Our results provide a plausible molecular mechanism underlying transmission of the transgenerational predisposition to obesity caused by gestational exposure to an environmental obesogen. They also provide an entry point for future studies aimed at understanding how environmental exposures alter chromatin structure to influence physiology across multiple generations in mammals.
Publisher
Research Square Platform LLC