Author:
Zhang Yi,Zhao Yanxia,Sun Qing,Chen Sining,Sun Shao,Liu Li
Abstract
Abstract
Understanding the impact of climate warming on crop yield and its associated mechanisms is paramount for ensuring food security. Here, we conduct a thorough analysis of the impact of vapor pressure deficit (VPD) on maize yield, leveraging a rich dataset comprising temporal and spatial observations spanning 40 years across 31 maize-growing locations in Northeast and North China, each characterized by unique climate conditions. Our investigation extends to the influencing meteorological factors that drive changes in VPD during the maize growing phase. Regression analysis reveals a linear negative relationship between VPD and maize yield, demonstrating diverse spatiotemporal characteristics. Spatially, maize yield exhibits higher sensitivity to VPD in Northeast China (NEC), despite the higher VPD levels in North China Plain (NCP). The opposite patterns reveal that high VPD not invariably lead to detrimental yield impacts. Temporal analysis sheds light on an upward trend in VPD, with values of 0.05 and 0.02 kPa/10yr, accompanied by significant abrupt changes around 1996 in NEC and 2006 in NCP, respectively. These temporal shifts contribute to the heightened sensitivity of maize yield in both regions. Importantly, we emphasize the need to pay closer attention to the substantial the impact of actual vapor pressure on abrupt VPD changes during the maize growing phase, particularly in the context of ongoing climate warming.
Publisher
Research Square Platform LLC