Island-based Cuckoo Search with Elite Opposition-based Learning and Multiple Mutation Methods for Solving Discrete and Continuous Optimization Problems

Author:

Abed-alguni Bilal H.1ORCID,Paul David2

Affiliation:

1. Yarmouk University

2. University of New England School of Science and Technology

Abstract

Abstract The Island Cuckoo Search ( i CSPM) algorithm is a new variation of Cuckoo Search (CS) that uses the island model and the Highly Disruptive Polynomial (HDP) mutation for solving a broad range of optimization problems. This article introduces an improved i CSPM algorithm called i CSPM with elite opposition-based learning and multiple mutation methods ( i CSPM2). i CSPM2 has three main characteristics. Firstly, it separates candidate solutions into a number of islands (sub-populations) and then divides the islands equally among four improved versions of CS: CS via Le'vy fights (CS1) [1], CS with HDPM mutation (CS10) [2], CS with Jaya mutation (CSJ) and CS with pitch adjustment mutation (CS11) [2]. Secondly, it uses Elite Opposition-based Learning (EOBL) to improve its convergence rate and exploration ability. Finally, it uses the Smallest Position Value (SPV) with scheduling problems to convert continuous candidate solutions into discrete ones. A set of 15 popular benchmark functions was used to compare the performance of iCSPM2 to the performance of the original i CSPM algorithm based on different experimental scenarios. Results indicate that i CSPM2 exhibits improved performance over i CSPM. However, the sensitivity analysis of i CSPM and i CSPM2 to their parameters indicates that their convergence behavior is sensitive to the island model parameters. Further, the single-objective IEEE CEC 2014 functions were used to evaluate and compare the performance of iCSPM2 to four well-known swarm optimization algorithms: DGWO [3], L-SHADE [4], MHDA [5] and FWA-DM [6]. The overall experimental and statistical results suggest that i CSPM2 has better performance than the four well-known swarm optimization algorithms. i CSPM2's performance was also compared to two powerful discrete optimization algorithms (GAIbH [7] and MASC [8]) using a set of Taillard's benchmark instances for the permutation flow shop scheduling problem. The results indicate that i CSPM2 performs better than GAIbH and MASC. The source code of i CSPM2 is publicly available at https://github.com/bilalh2021/iCSPM2

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3