Affiliation:
1. Jiangsu Province Key Laboratory of Anesthesiology
2. Cancer Hospital Chinese Academy of Medical Sciences
3. Jiangsu Key Laboratory New Drug Research and Clinical Pharmacy
4. Xuzhou Medical University
Abstract
Abstract
The mechanism of ketamine-induced neurotoxicity development remains elusive. Mitochondrial fusion/fission dynamics play a critical role in regulating neurogenesis. Therefore, this study was aimed to evaluate whether mitochondrial dynamics were involved in ketamine-induced impairment of neurogenesis in neonatal rats and long-term synaptic plasticity dysfunction. In the in vivo study, postnatal day 7 (PND-7) rats were intraperitoneally injected with 40 mg/kg ketamine four consecutive times at 1 h intervals. Our work revealed that ketamine induced mitochondrial fusion dysfunction in hippocampal NSCs by downregulating Mfn2 expression. In the in vitro study, ketamine treatment at 100 µM for 6 h significantly decreased the Mfn2 expression, and increased ROS generation, decreased mitochondrial membrane potential and ATP levels in cultured hippocampal NSCs. For the interventional study, lentivirus (LV) overexpressing Mfn2 (LV-Mfn2) or control LV vehicle was microinjected into the hippocampal dentate gyrus (DG) 4 days before ketamine administration. Targeted Mfn2 overexpression in the DG region could restore mitochondrial fusion in NSCs and reverse the inhibitory effect of ketamine on NSC proliferation and its faciliatory effect on neuronal differentiation. In addition, synaptic plasticity was evaluated by transmission electron microscopy, Golgi-Cox staining and long-term potentiation (LTP) recordings at 24 h after the end of the behavioral test. Our work revealed that preconditioning with LV-Mfn2 improved long-term cognitive dysfunction after repeated neonatal ketamine exposure by reversing the inhibitory effect of ketamine on synaptic plasticity in the hippocampal DG. The present findings demonstrated that Mfn2-mediated mitochondrial fusion dysfunction plays a critical role in the impairment of long-term neurocognitive function and synaptic plasticity caused by repeated neonatal ketamine exposure by interfering with hippocampal neurogenesis. Thus, Mfn2 might be a novel therapeutic target for the prevention of the developmental neurotoxicity of ketamine.
Publisher
Research Square Platform LLC
Reference47 articles.
1. 1. Jevtovic-Todorovic, V., et al., Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci, 2003. 23(3): p. 876 − 82.
2. 2. Davidson, A.J., et al., Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet, 2016. 387(10015): p. 239 − 50.
3. 3. McCann, M.E., et al., Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet, 2019. 393(10172): p. 664–677.
4. 4. Lee, J.J., L.S. Sun, and R.J. Levy, Report on the Sixth Pediatric Anesthesia Neurodevelopmental Assessment (PANDA) Symposium, "Anesthesia and Neurodevelopment in Children". J Neurosurg Anesthesiol, 2019. 31(1): p. 103–107.
5. 5. Warner, D.O., et al., Neuropsychological and Behavioral Outcomes after Exposure of Young Children to Procedures Requiring General Anesthesia: The Mayo Anesthesia Safety in Kids (MASK) Study. Anesthesiology, 2018. 129(1): p. 89–105.