Characterising the change rule of freshness and inorganic anions in reconstituted tobacco pulp with oscillation time

Author:

Li Huayu1,Li Pengyu2,Li Xiaoyu1,Xu HongTao1,Wang RuNan1,Yan Ying1,Yan Shaohui3,Zhang Litao1,Xue Jianzhong1,Wang Yanqing1,Zu Mengmeng1

Affiliation:

1. Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet,Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd

2. Henan Agricultural University

3. Luo he Vocational Technology College

Abstract

Abstract In order to study the change rule of freshness and acid ions in reconstituted tobacco slurry, the content changes of 17 organic acids and 5 inorganic anions in reconstituted tobacco slurry with different residence times under confined condition were determined by on-line solid-phase extraction ion chromatography in this study. The results showed that the changes of acetic acid, nitrate ion and isovaleric acid in different reconstituted tobacco slurries with oscillation time were regular and consistent, and the trends of the changes of acetic acid, nitrate ion and isovaleric acid in different reconstituted tobacco slurries with oscillation time were correlated with each other in a highly significant way. Taking the evaluation of olfactory aroma and sensory quality qualities of reconstituted tobacco pulps with different residence times as a benchmark, it was found that the variation patterns of nitrate ions and isovaleric acid in reconstituted tobacco pulps with oscillation time were consistent with the variation patterns of olfactory and sensory qualities in the process of closed oscillation; compared with the fresh pulp, the olfactory aroma and sensory qualities of tobacco pulps had unpleasant odours appearing when the content of nitrate ions was reduced by about 50%. The selection of isovaleric acid and nitrate ion as the characteristic components of tobacco reconstituted pulp for monitoring can provide technology for optimising pulp retention time and production process.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3