Timing anomaly detection based on GRU-INEncoder

Author:

Han Shiqian1,Wu Junxia1,Wang Jun1

Affiliation:

1. Shenyang University of Chemical Technology

Abstract

Abstract

In the field of unsupervised timing anomaly detection, existing methods face challenges in capturing long-range dependencies and dynamic timings due to the scale of the data and multiple feature dimensions. This paper presents a novel method for timing anomaly detection that effectively extracts long-range dependencies and dynamic timing features by leveraging stacked encoders and gated recurrent units (GRUs). Moreover, it introduces a multi-branch attention mechanism to extract local and global features, thereby enhancing the model's ability to perceive information at different scales. The local attention captures fine-grained time series changes, while the global attention focuses on long-term trends and overarching patterns. Experimental results demonstrate that our method significantly outperforms existing time-series anomaly detection methods across several publicly available datasets, such as SMD, MSL, and SMAP, affirming its superiority in terms of accuracy and robustness.

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder;Li L;IEEE Trans Neural Netw Learn Syst,2021

2. Deep transformer models for time series forecasting: The influenza prevalence case;Wu N,2020

3. RobustTAD: Robust time series anomaly detection via decomposition and convolutional neural tworks.arXiv:2002.09545;Gao J,2020

4. Wang, C., Viswanathan, K., Choudur, L. (2011). Statistical techniques for online anomaly detection in data centers[C]//12th IFIP/IEEE international symposium on integrated network management (IM 2011) and workshops. IEEE, : 385–392.

5. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J];Sahoo S;Measurement,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3