Antarctic krill (Euphausia superba) distributions, aggregation structures and predator interactions in Bransfield Strait

Author:

Annasawmy Pavanee1,Horne John K1,Reiss Christian S2,Cutter George R2,Macaulay Gavin J3

Affiliation:

1. University of Washington

2. NOAA Southwest Fisheries Science Center

3. Norwegian Institute of Marine Research

Abstract

Abstract Aggregation structures of Antarctic krill (Euphausia superba) and predator interactions were investigated using active acoustic data collected for approximately one month by WBAT and Signature100 echosounders deployed on moorings in two hydrographically different sites in Bransfield Strait. Near Nelson Island, water flows from the northwest to southeast while Deception Island is influenced by the Bransfield Front with stronger net current velocities from the southwest to northeast. Krill aggregations were identified and then classified in three clusters using a swarm-identification algorithm and hierarchical clustering using aggregation morphological characteristics: acoustic density, mean depth, center of mass, inertia, equivalent area, aggregation index, and proportion occupied. A total of 693 and 736 aggregations were detected at the mooring sites close to Nelson and Deception Islands. The three aggregation categories ranged from high to low densities, evenness and dispersion and were distributed throughout the water column. Krill aggregation densities and mean thickness are influenced by current velocities, direction, mean depth, and predator foraging. The majority of observed predator dive profiles occurred over the aggregation type with highest krill densities at both Nelson and Deception Islands, and within the first 25 m of the water column. The heterogeneity of krill aggregations potentially impacts predator foraging strategies and predator-krill interactions in the hydrodynamically active Bransfield Strait.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3