Automated Enforcement of Vehicle Tail Number Restrictions via SVM and Bayesian Optimization

Author:

Zhu Xuguang1,Zou Feifei1ORCID

Affiliation:

1. Liaoning Technical University

Abstract

Abstract

With urban congestion intensifying, vehicular tail number restriction policies have emerged as an efficacious strategy to mitigate traffic burden. Traditional enforcement, hinging on manual verification, suffers from inefficiencies and vulnerability to human error. Addressing these drawbacks, the present study introduces a Support Vector Machine (SVM)-based license plate recognition technique, augmented by Bayesian optimization, to automate adherence to tail number restrictions. Utilizing the Bayesian optimization algorithm for the fine-tuning of SVM parameters enables the proposed system to identify license plate numbers with heightened precision and swiftness, thus streamlining the enforcement process. Comparative experimental analysis substantiates that our proposed model outperforms existing methods, demonstrating superior recognition efficiency and accuracy. This advancement heralds a significant leap towards the integration of intelligent systems in urban traffic management.

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Research on alternative strategies for restricted traffic policies from a data fusion perspective;Qi W;Stat Inform Forum,2023

2. The promise of Beijing: Evaluating the impact of the 2008 Olympic Games on air quality[J];Chen Y;J Environ Econ Manag,2013

3. Traffic congestion and air quality: Evidence from vehicle license plate restrictions;Ji L;Oper Res Manage,2019

4. Costabile F, Allegrini I (2008) A new approach to link transport emissions and air quality: An intelligent transport system based on the control of traffic air pollution[J], vol 23. Environmental Modelling & Software, pp 258–267. 3

5. The impact of the alternate-day traffic restriction policy on residents' motor vehicle travel choices;Zhou YD;J Beijing Jiaotong Univ (Social Sciences),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3