Accelerated Dynamic Magnetic Resonance Imaging from Spatial-Subspace Reconstructions (SPARS)

Author:

Mertens Alexander J.1,Cheng Hai-Ling Margaret2

Affiliation:

1. The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto

2. Institute of Biomedical Engineering, University of Toronto

Abstract

Abstract Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) ideally requires a high spatial and high temporal resolution, but hardware limitations prevent acquisitions from simultaneously achieving both. Existing image reconstruction techniques can artificially create spatial resolution at a given temporal resolution by estimating data that is not acquired, but, ultimately, spatial details are sacrificed at very high acceleration rates. The purpose of this paper is to introduce the concept of spatial subspace reconstructions (SPARS) and demonstrate its ability to reconstruct high spatial resolution dynamic images from as few as one acquired radial spoke per dynamic frame. Briefly, a low-temporal-high-spatial resolution organization of the acquired raw data is used to estimate a spatial subspace in which the high-temporal-high-spatial ground truth data resides. This subspace is then used to estimate entire images from single k-space spokes. In both simulated and human in-vivo data, the proposed SPARS reconstruction method outperformed standard GRASP and GRASP-Pro reconstruction, providing a shorter reconstruction time and yielding higher accuracy from both a spatial and temporal perspective.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3