Comparative profiling of white matter development in the human and mouse brain reveals volumetric deficits and delayed myelination in Angelman syndrome

Author:

Ozarkar Siddhi1,Patel Ridthi1,Vulli Tasmai1,Smith Audrey1,Styner Martin1,Hazlett Heather1,Shen Mark1,Burette Alain1,Philpot Benjamin1

Affiliation:

1. University of North Carolina at Chapel Hill

Abstract

Abstract

Background Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still not well characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS. Furthermore, we probed the underlying neuropathology by examining the progression of myelination in an AS mouse model. Methods We conducted magnetic resonance imaging (MRI) on children with AS (n=32) and neurotypical controls (n=99) aged 0.5-12 years. In parallel, we examined myelination in postnatal Ube3a maternal-null mice (Ube3am-/p+; AS model), Ube3a paternal-null mice (Ube3am+/p-), and wildtype controls (Ube3am+/p+) using immunohistochemistry, Western blotting, and electron microscopy. Results Our data revealed that AS individuals exhibit significant reductions in brain volume by ~1 year of age, with WM reduced by 26% and gray matter by 21% by 6-12 years of age—approximately twice the reductions observed in the adult AS mouse model. In our AS mouse model, we saw a global delay in the onset of myelination, which normalized within days (likely corresponding to months or years in human development). This myelination delay is caused by the loss of UBE3A in neurons rather than UBE3A haploinsufficiency in oligodendrocytes. Interestingly, ultrastructural analyses did not reveal any abnormalities in myelinated or unmyelinated axons. Limitations: It is difficult to extrapolate the timing and duration of the myelination delay observed in AS model mice to individuals with AS. Conclusions This study reveals WM deficits as a hallmark in children with AS, demonstrating for the first time that these deficits are already apparent at 1 year of age. Parallel studies in a mouse model of AS show that these deficits may be associated with delayed onset of myelination due to the loss of neuronal (but not glial) UBE3A. These findings emphasize the potential of WM as both a therapeutic target for interventions and a valuable biomarker for tracking the progression of AS and the effectiveness of potential treatments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3