Neural Network for Asymptotic Dependence/ Independence Classification: A Series of Experiments

Author:

Wixson Troy P.1,Cooley Daniel1

Affiliation:

1. Colorado State University

Abstract

Abstract An early choice in the modeling of multivariate extremes is to infer whether the data are asymptotically dependent (AD) or asymptotically independent (AI). We perform a series of experiments to determine whether a convolutional neural network can reliably distinguish between these asymptotically defined regimes in the finite sample bivariate case. Along the way we develop a new classification tool for practitioners which we call \texttt{nnadic} as it is a Neural Network for Asymptotic Dependence/ Independence Classification. This tool accurately classifies 95% of test datasets and is robust to a wide range of sample sizes. The datasets which we are unable to correctly classify tend to either be nearly exactly independent or exhibit near perfect dependence, which are boundary cases for both the AD and AI models used for training.

Publisher

Research Square Platform LLC

Reference31 articles.

1. Coles, Stuart (2001) An introduction to statistical modeling of extreme values. Springer-Verlag London, Ltd., London, https://doi.org/10.1007/978-1-4471-3675-0, 10.1007/978-1-4471-3675-0, 1932132, 62-01 (60G70 62G32), 1-85233-459-2, xiv +208, Springer Series in Statistics

2. {R Core Team}. R: A Language and Environment for Statistical Computing. https://www.R-project.org/, 2022, Vienna, Austria, R Foundation for Statistical Computing

3. A. G. Stephenson (2002) evd: Extreme Value Distributions. R News 2(2): 0 https://CRAN.R-project.org/doc/Rnews/, June

4. Coles, S and Heffernan, J and Tawn, J (1999) Dependence measures for extreme value analyses. Extremes (Boston) 2(4): 339-365 Springer, eng, 1386-1999, 2000 INIST-CNRS, Heidelberg

5. Gumbel, E. J. (1960) Bivariate exponential distributions. J. Amer. Statist. Assoc. 55: 698--707 http://links.jstor.org/sici?sici=0162-1459(196012)55:292<698:BED>2.0.CO;2-5 &origin=MSN, John\ Riordan, 116403, 62.00, 0162-1459,1537-274X, Journal of the American Statistical Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3