The “Overlooked” Entropy and the Associated Role of Phonons in the Mixing Stabilization for Complex Ceramics

Author:

Tang Xiaochuan1,Weinberger Christopher1ORCID,Thompson Gregory2ORCID

Affiliation:

1. Colorado State University

2. University of Alabama

Abstract

Abstract

The concept of high entropy materials has been introduced based on the idea that multiple principal components can be mixed through the increase in configurational entropy. Implicit in this idea is that the vibrational entropy, the other component of the mixing entropy, is small compared to the configurational entropy. To explore this relationship, we examined the mixing enthalpy, configurational entropy, and vibrational entropy of two binary ceramic systems - the transition metal carbides and transition metal diborides. We computed the vibrational entropy directly using the dynamical matrices obtained from density functional theory and the quasi-harmonic approximation. The mixing vibrational entropy of the mixed diborides are at least as large as the configurational entropy while it is smaller for the carbides. Utilizing the phonon density of states, we further demonstrate the origin of the high mixing vibrational entropy arises because of a large number of new low frequency modes that appear in the diborides. Similar modes occur in the carbides but occur at larger frequencies. This differences ultimately arise because of the structural differences where metal atoms share nearest neighbors in the diborides, while they do not in the carbides. This increased vibrational mixing entropy dramatically enhances the mixing of the diborides and demonstrates that this type of entropy cannot be neglected when considering what stabilizes mixtures and provides a new perspective on what is considered high entropy.

Publisher

Springer Science and Business Media LLC

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3