Evaluation of Bayesian Linear Regression Derived Gene Set Test Methods

Author:

Bai Zhonghao1,Gholipourshahraki Tahereh1,Shrestha Merina1,Hjelholt Astrid1,Hu Sile2,Kjølby Mads1,Rohde Palle Duun3,Sørensen Peter1

Affiliation:

1. Aarhus University

2. Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford

3. Aalborg University

Abstract

Abstract

Background Gene set tests can pinpoint genes and biological pathways that exert small to moderate effects on complex diseases like Type 2 Diabetes (T2D). By aggregating genetic markers based on biological information, these tests can enhance the statistical power needed to detect genetic associations. Results Our goal was to develop a gene set test utilizing Bayesian Linear Regression (BLR) models, which account for both linkage disequilibrium (LD) and the complex genetic architectures intrinsic to diseases, thereby increasing the detection power of genetic associations. Through a series of simulation studies, we demonstrated how the efficacy of BLR derived gene set tests is influenced by several factors, including the proportion of causal markers, the size of gene sets, the percentage of genetic variance explained by the gene set, and the genetic architecture of the traits. By using KEGG pathways, eQTLs, and regulatory elements as different kinds of gene sets with T2D results, we also assessed the performance of gene set tests in explaining more about real phenotypes. Conclusions Comparing our method with other approaches, such as the gold standard MAGMA (Multi-marker Analysis of Genomic Annotation) approach, our BLR gene set test showed superior performance. Combining performance of our method in simulated and real phenotypes, this suggests that our BLR-based approach could more accurately identify genes and biological pathways underlying complex diseases.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3