Cytogenomic evaluation of regenerated Aralia elata using PLOP-FISH and flow cytometry

Author:

Peniton Eliazar Alumbro1,Nguyen Hong Thi1,Waminal Nomar Espinosa1,Yang Tae-Jin2,Kim Hyun Hee1

Affiliation:

1. Sahmyook University

2. Seoul National University

Abstract

Abstract

Aralia elata is closely related to Panax ginseng and contains high levels of saponins and other medicinal compounds. Successful A. elata micropropagation is commercially significant; however, the genomic stability of tissue culture-derived regenerants is unclear. In this study, callus-derived regenerated A. elata plants were obtained, and their cytogenomic constitutions were assessed. Using RepeatExplorer, pre-labeled oligonucleotide probes (PLOPs) were developed with newly mined tandem repeats from < 1× NGS whole-genome short reads, fluorescence in situ hybridization (FISH) was performed using six repeat probes, including three universal PLOPs, and genomic DNA content was estimated using flow cytometry. Regenerated A. elata plants (50) exhibited consistent ploidy, repeat distribution, and genome sizes compared with those exhibited by the mother plant. Six repeat probes were detected using FISH. Tandem repeat AeTR49 was identified as an excellent cytogenetic marker for homologous chromosomes, and AeTR161 and AeTR178 were localized in the centromeric and telomeric sections, respectively. Genomic DNA content (2C) was estimated at 2.46 ± 0.04 pg in the mother plant and 2.41 ± 0.05 pg in regenerated plants, with no significant variations in genome size or chromosome length. These results demonstrate that cytogenomics can be used to effectively evaluate chromosome-level genomic stability in regenerated A. elata plants.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3