Machine Learning-based Analytics of the Impact of the Covid-19 Pandemic on Alcohol Consumption Habit Changes Among United States Healthcare Workers

Author:

Rezapour Mostafa1,Niazi Muhammad Khalid Khan1,Gurcan Metin Nafi1

Affiliation:

1. Wake Forest University School of Medicine

Abstract

Abstract The COVID-19 pandemic is a global health concern that has spread around the globe. Machine Learning (ML) is promising in the fight against the COVID-19 pandemic. Machine learning and artificial intelligence have been employed by various healthcare providers, scientists, and clinicians in medical industries in the fight against COVID-19 disease. In this paper, we discuss the impact of the Covid-19 pandemic on alcohol consumption habit changes among healthcare workers in the United States during the first wave of the Covid-19 pandemic. We utilize multiple supervised and unsupervised machine learning methods and models such as decision trees, logistic regression, support vector machines, multilayer perceptron, XGBoost, CatBoost, LightGBM, AdaBoost, Chi-Squared Test, mutual information, KModes clustering and the synthetic minority oversampling technique (SMOTE) on a mental health survey data obtained from the University of Michigan Inter-University Consortium for Political and Social Research to investigate the links between COVID-19-related deleterious effects and changes in alcohol consumption habits among healthcare workers. Through the interpretation of the supervised and unsupervised methods, we have concluded that healthcare workers whose children stayed home during the first wave in the US consumed more alcohol. We also found that the work schedule changes due to the Covid-19 pandemic led to a change in alcohol use habits. Changes in food consumption, age, gender, geographical characteristics, changes in sleep habits, the amount of news consumption, and screen time are also important predictors of an increase in alcohol use among healthcare workers in the United States.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3