Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis

Author:

Wang Ziwei1,Shu Wan1,Zhao Rong1,Liu Yan1,Wang Hongbo1

Affiliation:

1. Wuhan Union Hospital

Abstract

Abstract Ferroptosis is a form of programmed cell death with important biological functions in the progression of various diseases, and targeting ferroptosis is a new tumor treatment strategy. Studies have shown that sodium butyrate plays a tumor-suppressing role in the progression of various tumors, however, the mechanism of NaBu in endometrial cancer is unclear. Cell viability, clone formation, proliferation, migration, invasion abilities and cell cycle distribution were assessed by CCK8 assay, Clone formation ability assay, EdU incorporation, Transwell chambers and flow cytometry. The level of ferroptosis was assayed by the levels of ROS and lipid peroxidation, the ratio of GSH/GSSG and the morphology of mitochondria. Molecular mechanisms were explored by metabolome, transcriptome, RNA-pulldown and mass spectrometry. The in-vivo mechanism was validated using subcutaneous xenograft model. In this study, NaBu was identified to inhibit the progression of endometrial cancer in vitro and in vivo. Mechanistically, RBM3 has a binding relationship with SLC7A11 mRNA. NaBu indirectly downregulates the expression of SLC7A11 by promoting the expression of RBM3, thereby promoting ferroptosis in endometrial cancer cells. In conclusion, Sodium butyrate can promote the expression of RBM3 and indirectly downregulate the expression of SLC7A11 to stimulate ferroptosis, which may be a promising cancer treatment strategy.

Publisher

Research Square Platform LLC

Reference44 articles.

1. Siegel RL, Miller KD, Fuchs HE et al (2022) Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1): p. 7–33

2. Endometrial cancer;Makker V;Nat Reviews Disease Primers,2021

3. Symptoms of endometrial cancer;Pakish JB;J Clin Oncol,2015

4. Endometrial cancer;Amant F;The Lancet,2005

5. Diagnosis and Management of Endometrial Cancer;Braun MM;Am Fam Physician,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3